
BITS Pilani Viswanathan Hariharan

Software Architecture

ATAM Case study

(Architecture evaluation)



Software projects come in different colours and shapes

Introduction

Small
improvement

Functionality 
enhancements

Complex mission 
critical

Improve 

response time

Add Loyalty module Build a satellite system



Review techniques differ

Introduction

Small
improvement

Functionality 
enhancements

Complex mission 
critical

Self evaluation Peer review External review



Today…

Method Case study+

ATAM 

Architecture Trade-off Analysis Method



Reviewers: External, from different organization

Method

Unbiased
opinion

Independent
perspective



Process steps… 

Macro view

Detailed 
view

Findings

1-2 days 2 days 1 week

Sponsor

Architect

Evaluation team

Sponsor

Architect

Evaluation team

+

All stakeholders

Evaluation team



Process steps…

Macro view

Detailed 
view

Findings

• Goals & Business functions

• Architectural approach

• Utility tree

• Detailed scenarios

• Prioritization

• Tactics used

• Risks

• Sensitivity 

• Trade-offs



Process steps

Macro view

• Goals & Business functions

• Architectural approach

• Utility tree

Judiciary system

• Goal: Improve efficiency of court operations

• Functions: Filing case, Proceedings, Judgement

• Quality attributes: Security of information, Usability

Utility tree



Process steps

Detailed 
view

• Detailed scenarios

• Prioritization

• Tactics used

Voting



Process steps

Findings

• Risks

• Sensitivity 

• Trade-offs

• Risks: Ex. Certain data access services are not secure enough. Hackers can get access to 

private data (such as date of birth) using these services.

• Sensitivity: Ex. An eComm system’s interface to telecom gateway is sensitive to changes in 

gateway interface

• Trade-offs: Ex. Multiple levels of security (user pwd, txn pwd, OTP) may impact usability. 



Case study: CAAS

Common Avionics Architecture System



Case study: CAAS

Common Avionics Architecture System

https://youtu.be/da9MHLeTwvY



Case study: CAAS

Common Avionics Architecture System

CAAS Cockpit integrates multiple sub-systems - communications, navigation, weapons, 

mission sensor
Ref: 

https://www.rockwellcollins.com/Products_and_Services/Defense/Avionics/Integrated_Cockpit_Solutions/Common_Avionics_Architec

ture_System.aspx



Rockwell Collins avionics management 

system caters to different types of helicopters



Two different proprietary avionics systems were in use

This resulted in greater effort to enhance and maintain

Background



Create a scalable system that meets the needs of multiple helicopter 

cockpits to address modernization issues

Case study: CAAS

Common Avionics Architecture System

Goal

1. Easier to maintain

2. Allow third-party upgrades

3. Provide a common ‘look and feel’



Case study: CAAS

Common Avionics Architecture System

Use a single, open, common avionics architecture system for all 

platforms to reduce the cost of ownership

Approach



CAAS: Quality attributes

Availability

Performance

Maintainability



CAAS: Architectural approach

Memory
& 

CPU 
allocation

Memory
& 

CPU 
allocation

Memory
& 

CPU 
allocation

Partition #1 Partition #2 Partition #3

Graphics Application Communication

Interface

Layers

Sample structure within a system

POSIX based system



Distributed system

CAAS: Architectural approach

Application Location 

transparency

Redundant software 

(Master-slave)



CAAS Utility tree



CAAS: Scenario generation & 
prioritization



CAAS: Sample observations 
from analysis

Risk

There are no built-in hooks to connect to simulators.

So the software can not drive both the simulators and the 

actual helicopters

Sensitivity
Isolating operating system dependencies will enhance 

portability.

Trade-off
Letting pilots set parameters such as turbine gas 

temperature limits, increases flexibility but decreases 

safety



CAAS: Sample observations 
from analysis

Themes
Several scenarios dealt with performance. However 

performance requirements were not spelled out 

clearly



External evaluation can also reveal additional risks not 

previously imagined

Additional risks



This system is used by army battalions to control the movement and 

operations of troops in real time in the battle-field. 

Case study: Battlefield Control 
system



The pattern of communication between Control and backup 

is distinct from communication with other nodes. They 

exchange far more data than other nodes

New risk discovered during 
evaluation…

Risk

Enemy may detect this pattern and attack the Control node 

and Backup node



• In large and complex mission critical systems, external 

reviews add a lot of value

• Such reviews brings together all stakeholders

• Apart from risk identification, the exercise generates very 

useful artifacts about the system such as Utility tree, 

Scenarios, Architecture diagrams, etc.

Conclusion



Reference:

Rockwell Collins case study:

https://resources.sei.cmu.edu/asset_files/TechnicalNote/20

03_004_001_14150.pdf

Appendix

https://resources.sei.cmu.edu/asset_files/TechnicalNote/2003_004_001_14150.pdf


Availability: 
– Do we have a mechanism to detect failure?

– Do we have a mechanism to switch to a backup component?

– Do we have a mechanism to inform the client about the failure?

– Do we have a mechanism to save state periodically?

Performance: 
– What is the mechanism to add & remove more resources dynamically?

– If there is a common resource that is needed by multiple clients, what is the 

mechanism to reduce the bottleneck?

Examples of self evaluation 
checklists



How to evaluate the availability of a system that has 2 

servers – one primary & one hot standby?

– If probability of server failure is 1% (1/100 = 0.01), what is the probability of 2 

servers failing at the same time? 

– Compare the availability of the system with one server and 2 servers

– Given that a server has failed, what is the probability that the second server also 

fails

– P * P = P2 = 0.01 * 0.01 = 0.0001

– Availability = 1 - Probability of failure = 1 - .0001 = .9999 = 99.99% (Availability 

with one server = 1 – 0.01 = .99 = 99%)

Example of Self evaluation 
models



How to calculate the latency (performance)?

– Let us say, in order to satisfy a client request, the request needs to pass via 3 

modules one after another.

– The latency of 1st module is 0.1 milli sec, latency of 2nd module is 0.2 milli 

second, latency of 3rd module is 0.3 milli second

– What is the latency experienced by the client? 

– Sum of Latency of each module = 0.1 + 0.2 + 0.3 = 0.6 milli second

Example of Self evaluation 
models

Module 
1

Module 
2

Module 
3

1 sec 2 sec 3 sec Total 6 seconds



• ATAM is a method used to evaluate architecture of large 

systems

• It assumes that reviewers are not familiar with the 

business goals and the architecture of the system

• It is suitable for many domains such as
• Finance

• Defence

• Automotive

• Etc.

Architecture Trade-off 
Analysis Method (ATAM)



Participants

• Evaluation team

• Project decision makers – Business stakeholder, Project manager

• Arch stakeholders – Users, developers, testers, maintenance staff

• Scenario scribe – Writes down scenarios discussed in the workshop

• Proceedings scribe – Captures the entire proceedings including goals, 

architecture approach, evaluation observations

ATAM



Output of ATAM

– Concise presentation of architecture

– Business goals

– Prioritized quality attribute scenarios

– Set of Risks and Non-risks

– Set of risk themes

– Mapping of architecture decisions to quality requirements (scenarios)

– Sensitivity & Trade-off points

ATAM



Phases

ATAM

Phase Activity Participants Duration

Phase 0 Partnership & 
Preparation

Eval team + Proj decision makers Few 
weeks

Phase 1 Evaluation Eval team + Proj decision makers + 
Architect

1-2 days

Phase 2 Evaluation Eval team + Proj decision makers + 
Architect + Stakeholders (view & view 
points)

2 days

Phase 3 Follow up (Prepare 
report)

Eval team 1 week



Phase 1

1. Present ATAM – Evaluation leader

2. Present business drivers – Proj decision maker (Bus goals, major functions)

3. Present architecture – Lead architect

4. Identify architectural approaches – Evaluation team

5. Generate utility tree – Eval team + Project decision makers

6. Analyse architectural approaches (sufficiency of architecture, risks, sensitivity & 

trade-off)

Phase 2

7. Brainstorm & prioritize business scenarios - Eval team + Project decision makers + 

Stakeholders

8. Analyze architectural approaches

Phase 3

9. Present results

ATAM - Steps



Ref: http://www.sei.cmu.edu/library/assets/best_practices.pdf

Conceptual flow of ATAM

http://www.sei.cmu.edu/library/assets/best_practices.pdf


Results consist of

• Arch approaches (ex. Layering, distributed processing)

• Prioritized scenarios

• Risks, Non risks (Risks are arch decisions that may lead to undesirable 

consequences)

• Sensitivity points & Trade-offs (arch decisions that have a marked effect on one or 

more Quality attributes)

• Risk themes (Systemic weaknesses in architecture)

ATAM - Results



• Overall, the goal of the CAAS is to create a scalable system that meets the 

needs of multiple helicopter cockpits to address modernization issues. 

• Its approach is to use a single, open, common avionics architecture system 

for all platforms to reduce the cost of ownership. 

• This approach is based on Rockwell Collins’ Cockpit Management System 

(CMS) in its Flight 2 family of avionics systems, augmented with IAS 2 

functionality. 

Case study: CAAS

Common Avionics Architecture System



1. Partitioning: Partitioning of memory and utilization of CPU time (availability, 

safety, modifiability, testability, maintainability) 

2. Encapsulation: used to isolate partitions. Between partitions, applications 

can share only their state via the network. The remote service interface 

(RSI) and remote service provider (RSP) are examples of encapsulation 

that isolate the network implementation details. (modifiability, availability) 

3. Interface strategy: Accessing components only via their interfaces is strictly 

followed. Besides controlling interactions and eliminating the back-door 

exploitation of changeable implementation details, this strategy reduces the 

number of inputs and outputs per partition. (modifiability, maintainability) 

4. Layers: used to partition and isolate high-level graphics services (portability, 

modifiability) 

5. Distributed processing: Predominantly, a client-server approach is used to 

decouple “parts” of the system. Also, the Broadcast feature is used to 

broadcast information periodically. (maintainability, modifiability) 

CAAS: Arch approaches


