// L

Software Architecture

ATAM Case study
(Architecture evaluation)

Viswanathan Hariharan

BITS Pilani

Introduction

Software projects come in different colours and shapes

Complex mission

critical
Functionality

enhancements

Small
improvement

Improve Add Loyalty module Build a satellite system
response time

Introduction

Review techniques differ

Complex mission

critical
Functionality

enhancements

Small
improvement

Self evaluation Peer review External review

Today...

ATAM

Architecture Trade-off Analysis Method

+

Method

Reviewers: External, from different organization

Unbiased Independent
opinion perspective

Process steps...

Detailed

view

1-2 days 2 days 1 week

S ———————————————————_

Sponsor Sponsor Evaluation team
Architect Architect
Evaluation team Evaluation team

+
All stakeholders

Process steps...

Detailed

view

 Goals & Business functions * Detailed scenarios * Risks

Macro view

« Architectural approach * Perioritization « Sensitivity

« Utility tree » Tactics used » Trade-offs

Process steps = [

Judiciary system

« Goal: Improve efficiency of court operations
* Functions: Filing case, Proceedings, Judgement

» Quality attributes: Security of information, Usability

Macro view

Utility tree

Quality Attrubute Scenrario Business | Architect
. . attribute refmement value ure
Goals & Business functions o . . ——
Security Integrity The proceedings should not be lost or tampered with by unauthorized High High
people, including those working in the court (1)
Usability Worldlow Once the staff enter the proceedings, it should come to the concerned judge High High
for review, changes and approval (3)
H Modifiabil | Criteria The cases should be intelligently scheduled considering the age of the case. | Medium Medium
Architectural approach o | pection | et e ()
Usability Status The system should send notification to the concerned lawyer and parties High High
notification when hearings are scheduled (5)
Performan | Response time | Proceedings will consist of text, photos, images & videos (b) Medium Medum
oy ce
Utl I Ity tre e Usability Understanding | Information can be categorized as evidence. arguments, facts. etc. System High Low
‘user model should aid in the entry of such information and make the data entry
efficient (2)
Usability Intuitiveness Registering a case should be very easy (2) High Medium
Usability Status Ishould be notified about the hearing date (5) High High
notification
Usability Understanding | I should be able to upload documents (2) High Low
user model
Usabdlity Status I should be notified when the proceedings are posted and I should be able High High
notification to view them in chronological order (2)
Usability Inmitiveness I should be able tofile affidavits and petitions online (2) High Low

Process steps

Detailed

view

* Detailed scenarios
* Perioritization Voting

 Tactics used

Process steps

Risks: Ex. Certain data access services are not secure enough. Hackers can get access to
private data (such as date of birth) using these services.

Sensitivity: Ex. An eComm system’s interface to telecom gateway is sensitive to changes in
gateway interface

Trade-offs: Ex. Multiple levels of security (user pwd, txn pwd, OTP) may impact usability.
Findings

* Risks
« Sensitivity

 Trade-offs

Case study: CAAS

Common Avionics Architecture System

Rockwell
Collins

Building trust every day

Case study: CAAS
Common Avionics Architecture System

Rockwell Collins Common Avionics Architecture System (C... @ #

https://youtu.be/da9MHLeTwvY

Case study: CAAS
Common Avionics Architecture System

| e e et ot)

CAAS Cockpit integrates multiple sub-systems - communications, navigation, weapons,

MISSION Sensor
Ref:
https://www.rockwellcollins.com/Products_and_Services/Defense/Avionics/Integrated_Cockpit_Solutions/Common_Avionics_Architec
ture_System.aspx

Rockwell Collins avionics management
system caters to different types of helicopters

Background

Two different proprietary avionics systems were in use

This resulted in greater effort to enhance and maintain

Case study: CAAS
Common Avionics Architecture System

Create a scalable system that meets the needs of multiple helicopter
cockpits to address modernization issues

1. Easier to maintain
2. Allow third-party upgrades
3. Provide a common ‘look and feel’

Case study: CAAS
Common Avionics Architecture System

Approach

Use a single, open, common avionics architecture system for all
platforms to reduce the cost of ownership

CAAS: Quality attributes

Availability

Performance

Maintainability

CAAS: Architectural approach

Sample structure within a system
Partition #1 Partition #2
Memory Memory
& &

CPU CPU
allocation allocation

Graphics Application

Layers

POSIX based system

Partition #3

Memory
&
CPU
allocation

Communication

CAAS: Architectural approach

(R] Farfition #2 Partition #5 Partitsn #1 Partition #2 Partition #3

Memory Memory Memory
& & &

Memory Memory
CcPU & @

allocation

cPU
allocation

cPU
allocation

cPU
allocation

cPU
allocation

.
Graphics Application Communication -
Graphics Application Communication

Layers e

Application Location
transparency

Partit@n #1 Partition #2 Partition #3

& 2 Redundant software

G (Master-slave)

Layers

CAAS

Table 1:

Quality
Attribute
Attribute
Concerns
Scenarios

Attribute
Concerns
Scenarios

Attribute
Concerns
Scenarios

Utility tree

Utility Tree for the Availability Quality Attribute

Phase 1: Quality Attribute Utility Tree
availability

The OFP doesn't crash.

1. Invalid data i1s entered by the pilot, and the system does not crash.

2. Invalid data comes from an actor on any bus, and the system does not
crash.

3. When a 1.9-second power interruption occurs, the system will execute
a warm boot and be fully operational in 2 seconds.

graceful degradation in the presence of failures

1. Aloss of Doppler occurs, the pilot is notified, and the Doppler timer
begins a countdown (for multi-mode radar [MMR] validity).

2. A partition fails, the rest of the processor continues working, and the
system continues to function.

no degradation in the presence of failures for which there are redundant

components/paths

1. The data concentrator suffers battle damage, and all flight-critical
information is still available.

2. The mission processor in the outboard MFD fails, and that display and
the rest of the system continue to operate normally.

CAAS: Scenario generation &
prioritization

Table 2: Brainstormed Scenarios from Step 7

Phase 2: Brainstormed Scenarios

Scenario Scenario Text Number
Number of Votes
2 Changes to the CAAS are reflected in the simulation and)

training system concurrently with the airframe changes,
without coding it twice (simulation and training stakeholder).

3 No single point of failure in the system will affect the system’s 10
safety or performance (system architect stakeholder).
5 Multiple versions of the system must be fielded at the same 1

time. Those versions should be distinguishable and should not
have a negative impact on the rest of the system (system

implementer stakeholder)

9 75% of the CAAS is built from reused components increasing 9
new business opportunities (from Phase 1, program manager
stakeholdar).

13 Given maximum “knob twiddling” to the level that the system’'s 6

performance is degraded, the system can prioritize its flight-
critical functions, so they are NOT degraded (safety
stakeholder).

15 Given the need for a second ARC231, the radio can be 2
incorporated into the existing system by reusing existing
software at minimal or no cost (requirements stakeholder).

20 An application doesn't crash, but starts producing bad data. 3
The system can detect the errant data and when applications
crash (reliability stakeholder).

CAAS: Sample observations
from analysis

There are no built-in hooks to connect to simulators.

RISk So the software can not drive both the simulators and the
actual helicopters

|solating operating system dependencies will enhance

Sensitivity portability.

Letting pilots set parameters such as turbine gas
Trade-off temperature limits, increases flexibility but decreases
safety

CAAS: Sample observations
from analysis

Several scenarios dealt with performance. However
Themes performance requirements were not spelled out
clearly

Additional risks

External evaluation can also reveal additional risks not
previously imagined

Case study: Battlefield Control
system

This system is used by army battalions to control the movement and
operations of troops in real time in the battle-field.

Soldier
[
Soldier ‘.l
fo external E R .y Soldier
Command <) v LT
and Control Teell
systems » Commander |y_
4 Tl ,
Soldier }‘ : " Soldier
Soldier ’_ Soldier

Soldier

New risk discovered during
evaluation...

The pattern of communication between Control and backup
IS distinct from communication with other nodes. They
exchange far more data than other nodes

Risk

Enemy may detect this pattern and attack the Control node
and Backup node

Conclusion

 In large and complex mission critical systems, external
reviews add a lot of value

« Such reviews brings together all stakeholders

« Apart from risk identification, the exercise generates very
useful artifacts about the system such as Utility tree,
Scenarios, Architecture diagrams, etc.

Appendix

Reference:
Rockwell Collins case study:

https://resources.sei.cmu.edu/asset files/TechnicalNote/20
03 004 001 14150.pdf

https://resources.sei.cmu.edu/asset_files/TechnicalNote/2003_004_001_14150.pdf

Examples of self evaluation
checklists

Availability:
— Do we have a mechanism to detect failure?
— Do we have a mechanism to switch to a backup component?
— Do we have a mechanism to inform the client about the failure?
— Do we have a mechanism to save state periodically?

Performance:
— What is the mechanism to add & remove more resources dynamically?

— If there is a common resource that is needed by multiple clients, what is the
mechanism to reduce the bottleneck?

Example of Self evaluation
models

How to evaluate the availability of a system that has 2
servers — one primary & one hot standby?

— If probability of server failure is 1% (1/100 = 0.01), what is the probability of 2
servers failing at the same time?

— Compare the availability of the system with one server and 2 servers

— Given that a server has failed, what is the probability that the second server also
fails

— P*P=P2=0.01*0.01 =0.0001

— Availability = 1 - Probability of failure = 1 - .0001 = .9999 = 99.99% (Availability
with one server =1 —0.01 = .99 = 99%)

Example of Self evaluation
models

How to calculate the latency (performance)?

— Let us say, in order to satisfy a client request, the request needs to pass via 3
modules one after another.

— The latency of 15t module is 0.1 milli sec, latency of 2"d module is 0.2 milli
second, latency of 39 module is 0.3 milli second

— What is the latency experienced by the client?
— Sum of Latency of each module = 0.1 + 0.2 + 0.3 = 0.6 milli second

Module Module Module
1 g T 2 g 7 3

1 sec 2 sec 3 sec Total 6 seconds

Architecture Trade-off
Analysis Method (ATAM)

 ATAM is a method used to evaluate architecture of large
systems

It assumes that reviewers are not familiar with the
business goals and the architecture of the system

It is suitable for many domains such as

* Finance

» Defence

« Automotive
- Etc.

ATAM

Participants

« Evaluation team

» Project decision makers — Business stakeholder, Project manager

» Arch stakeholders — Users, developers, testers, maintenance staff

« Scenario scribe — Writes down scenarios discussed in the workshop

» Proceedings scribe — Captures the entire proceedings including goals,
architecture approach, evaluation observations

ATAM

Output of ATAM

— Concise presentation of architecture

— Business goals

— Perioritized quality attribute scenarios

— Set of Risks and Non-risks

— Set of risk themes

— Mapping of architecture decisions to quality requirements (scenarios)
— Sensitivity & Trade-off points

ATAM

Phases

m Activity Participants m

Phase 0 Partnership &
Preparation

Phase 1 Evaluation

Phase 2 Evaluation

Phase 3 Follow up (Prepare
report)

Eval team + Proj decision makers

Eval team + Proj decision makers +
Architect

Eval team + Proj decision makers +
Architect + Stakeholders (view & view
points)

Eval team

weeks
1-2 days

2 days

1 week

ATAM - Steps

Phase 1

Present ATAM — Evaluation leader

Present business drivers — Proj decision maker (Bus goals, major functions)
Present architecture — Lead architect

Identify architectural approaches — Evaluation team

Generate utility tree — Eval team + Project decision makers

Analyse architectural approaches (sufficiency of architecture, risks, sensitivity &
trade-off)

2 o o

Phase 2

7. Brainstorm & prioritize business scenarios - Eval team + Project decision makers +
Stakeholders

8. Analyze architectural approaches

Phase 3
9. Present results

Conceptual flow of ATAM

Conceptual Flow of ATAM

Tradeoffs

Sensitivity Points

distilled Non-Risks
into

Risk Themes ﬁ Risks

Ref: http://www.seil.cmu.edu/library/assets/best practices.pdf

http://www.sei.cmu.edu/library/assets/best_practices.pdf

ATAM - Results

Results consist of

« Arch approaches (ex. Layering, distributed processing)
* Prioritized scenarios

* Risks, Non risks (Risks are arch decisions that may lead to undesirable
consequences)

« Sensitivity points & Trade-offs (arch decisions that have a marked effect on one or
more Quality attributes)

* Risk themes (Systemic weaknesses in architecture)

Case study: CAAS

Common Avionics Architecture System

Overall, the goal of the CAAS is to create a scalable system that meets the
needs of multiple helicopter cockpits to address modernization issues.

Its approach is to use a single, open, common avionics architecture system
for all platforms to reduce the cost of ownership.

This approach is based on Rockwell Collins’ Cockpit Management System
(CMS) in its Flight 2 family of avionics systems, augmented with I1AS 2
functionality.

CAAS: Arch approaches

1. Partitioning: Partitioning of memory and utilization of CPU time (availability,
safety, modifiability, testability, maintainability)

2. Encapsulation: used to isolate partitions. Between partitions, applications
can share only their state via the network. The remote service interface
(RSI) and remote service provider (RSP) are examples of encapsulation
that isolate the network implementation details. (modifiability, availability)

3. Interface strategy: Accessing components only via their interfaces is strictly
followed. Besides controlling interactions and eliminating the back-door
exploitation of changeable implementation details, this strategy reduces the
number of inputs and outputs per partition. (modifiability, maintainability)

4. Layers: used to partition and isolate high-level graphics services (portability,
modifiability)
5. Distributed processing: Predominantly, a client-server approach is used to

decouple “parts” of the system. Also, the Broadcast feature is used to
broadcast information periodically. (maintainability, modifiability)

